Measuring the poise of thiol/disulfide couples in vivo.

نویسندگان

  • Dean P Jones
  • Yongliang Liang
چکیده

The reduction potentials (E(h)) for the redox couples GSH/GSSG and cysteine/cystine (Cys/CySS) in plasma are useful indicators of systemic oxidative stress and other medically relevant physiological states. This article describes a sensitive method for determining plasma levels of GSH, GSSG, Cys, and CySS used to calculate the in vivo E(h) values. The method uses iodoacetate to alkylate free thiols, derivatization with dansyl chloride to fluorescently tag amino groups, and HPLC and fluorescence to separate, detect, and quantify the molecules. Benefits of the method, such as sensitivity and dynamic range, are described, as are caveats, such as the importance of preventing red blood cell hemolysis and limitations in quantification of GSSG. General principles of redox chemistry and previous studies showing that the compounds are more oxidized than predicted from their standard reduction potentials are reviewed. The calculated in vivo E(h) is a convenient and informative way of summarizing the redox environment of plasma and is also useful for studies of cerebrospinal fluid, lymph, bronchoalveolar lavage fluid, human biopsies, and a broad range of in vitro cell culture conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifetime imaging of a fluorescent protein sensor reveals surprising stability of ER thiol redox

Interfering with disulfide bond formation impedes protein folding and promotes endoplasmic reticulum (ER) stress. Due to limitations in measurement techniques, the relationships of altered thiol redox and ER stress have been difficult to assess. We report that fluorescent lifetime measurements circumvented the crippling dimness of an ER-tuned fluorescent redox-responsive probe (roGFPiE), faithf...

متن کامل

Green synthesis and evaluation of 5-(4-aminophenyl)-4-aryl-4H-1, 2, 4-triazole-3-thiol derivatives

The green synthesis of 5-(4-aminophenyl)-4-aryl-4H-1,2,4-triazole-3-thiol was achieved in four steps, In first step, 4-amino benzoic acid refluxed in ethanol along with catalyst Conc. Sulphuric acid to produce ethyl-4-amino benzoate I. Further compound I refluxed with hydrazine hydrate in ethanol to produce 4-amino benzohydrazide II. Compound II refluxed in ethanolic potassium hydroxide with ca...

متن کامل

Biological disulfides: the third messenger? Modulation of phosphofructokinase activity by thiol/disulfide exchange.

Rabbit muscle phosphofructokinase is rapidly inactivated at pH 8.0 by incubation with low concentrations of oxidized glutathione, Coenzyme A glutathione mixed disulfide, and oxidized Coenzyme A. The inactivation is first order in disulfide concentration over the concentration ranges examined (50-200 microM), and is approximately 8-fold slower at pH 7.0 than at pH 8.0. The substrates ATP and fru...

متن کامل

Proton stoichiometry in the reduction of the FAD and disulfide of Escherichia coli thioredoxin reductase. Evidence for a base at the active site.

The oxidation-reduction midpoint potentials, Em, of the FAD and active site disulfide couples of Escherichia coli thioredoxin reductase have been determined from pH 5.5 to 8.5. The FAD and disulfide couples have similar Em values and thus a linked equilibrium of four microscopic enzyme oxidation-reduction states exists. The binding of phenylmercuric acetate to one enzyme form could be monitored...

متن کامل

In vitro inhibition of topoisomerase IIα by reduced glutathione.

In most cells, the major intracellular redox buffer is glutathione (GSH) and its disulfide-oxidized (GSSG) form. The GSH/GSSG system maintains the intracellular redox balance and the essential thiol status of proteins by thiol disulfide exchange. Topoisomerases are thiol proteins and are a target of thiol-reactive substances. In this study, the inhibitory effect of physiological concentration o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 47 10  شماره 

صفحات  -

تاریخ انتشار 2009